C.U.SHAH UNIVERSITY Winter Examination-2018

Subject Name: Complex Analysis

Subject Code: 5SC01COA1		Branch: M.Sc.(Mathematics)	
Semester: 1	Date:30/11/2018	Time:02:30 To 05:30	Marks: 70

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION – I

Q-1	Attempt the Following questions	(07)			
a)	Find the rectangular form of $z = 4e^{-570^{\circ}i}$.	(02)			
b)	Solve: $\sin z = 2$.	(02)			
c)	Define Entire function and give one example of it.	(02)			
d)	True/False: An analytic function with constant imaginary part is constant.	(01)			
Q-2	Attempt all questions	(14)			
a)	If $\alpha, \alpha^2, \alpha^3, \alpha^4$ are the roots of $x^5 = 1$, find them and prove that	(04)			
	$(1-\alpha)(1-\alpha^2)(1-\alpha^3)(1-\alpha^4)=5.$				
b)	Show that the set of values of $Log i^3$ is not same as the set of values of $3Log i$.	(03)			
c)	Find real and imaginary part of $\left(\sqrt{i}\right)^{\sqrt{i}}$.	(04)			
d)	Find the value of $\tan^{-1}(2i)$.	(03)			
OR					
Q-2	Attempt all questions	(14)			
a)	Find the product of all roots of $z^5 = 1 + i$.	(04)			
b)	Solve: $z^2 - (3-i)z + (4-3i) = 0$	(03)			
c)	Find real and imaginary part of $\left[\frac{e}{2}\left(-1-\sqrt{3}i\right)\right]^{3\pi i}$.	(04)			
d)	Prove that $\sinh^{-1} z = \log(z + \sqrt{z^2 + 1})$.	(03)			

Q-3	2)	Attempt all questions	(14)
	a)	State and prove necessary and sufficient condition for the function to be analytic. Find the analytic function $f(z)$ if the real part of $f(z)$ is $r^2 \cos 2\theta + r \sin \theta$.	(07)
	b)	Find the analytic function $f(z)$ if the real part of $f(z)$ is $r^2 \cos 2\theta + r \sin \theta$.	(05)
	c)	Define: Harmonic function, Differentiability of function. OR	(02)
Q-3		Attempt all questions	(14)
χv	a)	State and prove chain rule for derivatives.	(07)
	b)	If $f(z) = \sqrt{ xy }$ is not analytic at the origin although Cauchy-Riemann equations	(05)
		are satisfied at origin.	
	c)	Define: Continuous function and give one example of the function which is	(02)
		continuous but not differentiable.	
		SECTION – II	
Q-4		Attempt the Following questions	(07)
	a)	State Liouville's theorem.	(02)
	b)	Evaluate: $ \oint_C \frac{e^z}{z(z-1)^3} dz , c: z = \frac{1}{2}. $	(02)
	c)	Find the residue of $f(z) = z^4 e^{\frac{1}{z}}$.	(02)
	d)	Which are the fixed points of $w = \frac{5z-4}{5+z}$?	(01)
Q-5		Attempt all questions	(14)
٧٠	a)	State and prove Cauchy's integral formula.	(05)
	b)	Integrate the function $f(z) = (\overline{z})^2$ from 0 to $2+i$ path is from $(0,0)$ to $(2,0)$ along	(05)
		the real axis and then from $(2,0)$ to $(2,1)$.	
	c)	Integrate the function $f(z) = \frac{1}{z^4 + 4z^2}$ around the curve $C: z - 2i = 3$ traversed in	(04)
		counter-clockwise direction.	
		OR	
Q-5		Attempt all questions	(14)
	a)	Evaluate $\iint_{C} \frac{\sin \pi z^2 + \cos \pi z^2}{(z-2)(z-1)^2} dz; C: z = 3 \text{ by using Cauchy's integral formula.}$	(05)
	b)	Let $P(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_n z^n (a_n \neq 0)$ be a complex valued polynomial of	(05)
		degree $n(n \ge 1)$ then there exist at least one complex root z_0 such that $P(z_0) = 0$.	
	c)	Find an upper bound for the absolute value of the integral $\int \frac{\sqrt{z}}{z^2+1} dz$ where c is the	(04)

c) Find an upper bound for the absolute value of the integral $\int_C \frac{\sqrt{z}}{z^2 + 1} dz$ where *c* is the (04) contour given by upper half of the circle |z| = 3.

Q-6 Attempt all questions

a) Find the Laurent expansions for the function $f(z) = \frac{z}{(z-2)(z+i)}$ in the regions (05)

i)
$$1 < |z| < 2$$
 ii) $|z| > 2$.
b) Evaluate:
$$\int_{0}^{2\pi} \frac{\cos \theta}{5 + 4\cos \theta} d\theta$$
(05)

c) Find the bilinear transformation which maps 1, i, -1 onto i, 0, -i respectively and (04) also find the image of |z| < 1.

OR

Q-6 Attempt all Questions

a) State and prove Taylor's theorem. (05)

b) Evaluate:
$$\int_{-\infty}^{\infty} \frac{dx}{(x^2+1)(x^2+2x+2)}$$
 (05)

c) Evaluate
$$\iint_{C} \frac{z}{(z-2)^{2}(z-1)} dz; c: |z-2| = 0.5 \text{ by using Cauchy's residue theorem.}$$
(04)

(14)

(14)